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ABSTRACT

It is shown that a Banach space is super-reflexive if and only if the girth of its
unit ball is greater than 4. Consequently, “girth greater than 4” is a property
preserved under isomorphisms and duality.

1. Introduction

This note is a further contribution to the geometrical insight into certain
conditions, stronger than reflexivity, for Banach spaces. The concept of super-
reflexivity of Banach spaces was introduced and discussed by James [4], who
showed that it has several equivalent geometric interpretations and that it is
preserved under isomorphisms and duality. The concept of the girth of the unit
ball, i.e., the infimum of the lengths of centrally symmetric simple closed rectifi-
able curves onits surface, was introduced by Schiffer [6]; Schiffer and Sundaresan
proved in [8] that a Banach space is reflexive if the girth of its unit ballis not 4.
In this note we prove that, in fact, the space is super-reflexive if and only if this
girth is not 4. We thus obtain, on the one hand, an additional metric characteriza-

tion of super-reflexivity, and prove, on the other, that “‘girth not 4> is a property
preserved under isomorphism and duality.

2. Definitions and auxiliary results

Allnormed spaces shall be non-trivial real normed linear spaces. A subspace of a
normed space is a linear subspace provided with the norm induced by the inclusion.

If X and Y are normed spaces, Y is said to be finitely representable in X if
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and only if for every finite-dimensional subspace Z of Y and every number A > 1
there exists a linear mapping T:Z — X such that A= z| < || Tz| 4| z| for
all z € Z; equivalently, if and only if for every finite-dimensional subspace Z of X
and every number ¢ > 0 there exists a subspace W of X, of the same dimension,
such that A(Z, W) < ¢, where A is the Banach-Mazur distance [1, pp. 242-243].
Finite representability is a transitive relation, and it is easy to see that a normed
space is finitely representable in every dense subspace of itself. It follows that Y is
finitely representable in X if and only if the completion of Y is.

A Banach space X is said to be super-reflexive [4] if and only if no non-
reflexive Banach space is finitely representable in X. The preceding comments
show that to prove that a given Banach space X is not super-reflexive it is enough
to exhibit a normed space that has a non-reflexive completion and is finitely
representable in X.

For a normed space X, we denote by 2m(X) the girth of its unit ball, as defined
in the introduction. For a more detailed discussion of this concept, see [6], [8].
Obviously, m(X) = 2. The link between the condition “m(X)=2"" and the
geometric conditions that prevent the space from being super-reflexive is the
following property of a normed space X, introduced in [8]; it is a generalized
negation of uniform non-squareness [2]:

(J): For every positive integer n and every number p, 0 < p <1, there exist
x,€X, k=1,-,n, such that ]lxku £1 for k=1,--,n, and

”— ZJ] X, + i xk“>pn
1 jt+1

for j=0,-,n.
We require several auxiliary results; the first two are theorems frem [8].

TueoreM 2.1. ([8, Theorem 2.2]). If Y is a non-reflexive Banach space,
then Y satisfies (J).

THEOREM 2.2. ([8, Theorem 3.2]). A normed space X satisfies (J) if and only
if m(X)=2.

LEMMA 2.3. Let X be a normed space, ¢ a number, 0<e<1, and n a
positive integer. If u, € X and “ u, l] L1lfork=1,-,n,andif H 25 uy H >n—e,
then H PRERTH H > (1 —¢) 1y, for every choice of numbers 3,20, k=1,--,n,
other than y, =+ =1y,=0,
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PRrOOF. Let the y, be given, and set y,,, =7, k=1,---,n — 1. Then

|

+(m -1 i Yo
1

(n—g) X 'J’k<” Lu|Z = E E yk+1uk“
1 1 1 i=0

n—1 n n
£ 2 T dul =] T o
i=1 k=1 1
and the conclusion follows.

LeMMA 2.4, Let E be a real linear space and let =: E — R be a seminorm on
E. If n is a positive integer and x, € E, k = 1,--,n, satisfy

2.1) n(x) £1, k=1,---,n,
(22) ( 2 xk+ z xk)>n_1 J =0’--.,n’

j+1
then n(Xiwx,) > 0 for all real oy, k =1,---,n, unless o¢; = --- =, = 0.

PrROOF. (cf. [7, Proof of Theorem 2]J). Suppose that, on the contrary, there
exist a, not all 0, such that

2.3) . ( 3 akxk) ~0.

1
We may assume without loss of generality that
2.4) maxklcxkl =1= [ oz,,l

for some h, 1 £ h £ n. Then

h-1 n h-1 n
- 2 ak + 2 “k I - E Otk + Z “k = ‘(‘_ 2 ka + E Otk)
1 h h+1 1 h

—(—Eak‘}‘ %{dk)
1 h+1

\

=2|o¢,,| =2,

One of the two summands of the leftmost member is not less than 1; setting
j=h—1or j=h, and replacing every o, by — o if necessary, we may con-
sequently assume, without invalidating (2.3), (2.4), that

(2.5) - E o + Z o, =1 for some j, 0<j<n.

j+1

Combining (2.2) for that value of j with (2.3), (2.4), (2.1), (2.5), we find

n—1<7t( Exk+ Zxk)—n(— 213(1,+ock)xk+ %(l—ak)xk)
1 j+1

j+1
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< T (lta)+  (-a)=n - (— S0+ ¥ ock)gn—l,
1 1

j+1 j+1

a contradiction.

3. The main theorem
THEOREM 3.1. If X is a Banach space, X is super-reflexive if and only if X
does not satisfy (J).

ProOF. 1. Suppose that X is not super-reflexive. Then there exists a non-
reflexive Banach space Y that is finitely representable in X; by Theorem 2.1, Y
satisfies (J). Let n and p, 0 < p< 1, be given, and choose A > 1 such that 4%p < 1.
There exist y,eY, k=1,-,n, such that |y <1 for k=1,,n and
| = Ziye+ Zisi 0] = A%pn for j =0, n. If Z is the (at most n-dimensional)
subspace of Y spanned by y;,--,y,, there exists a linear mapping T: Z — X such
that l‘lu z|| g |Tz| 24| z| forallzeZ. Weset x, =A=' Ty, e X, k=1,-,n,
and find | x, “ <2 ' ye| =1 for k=1,-,n, and

“" % X + jé xk“é/l-ZH - ?j yk+j+§:l yk“>pn

for j=0,---,n. Since n and p, 0 < p <1, were arbitrary, X satisfies (J).

2. In the rest of the proof we assume that X satisfies (J). There exist, therefore,
xzeX forall k=1,--,n and n 2 1 such that

(3.1) |

and | — Z]_ xp+ Zi_ ;4 xt| >n—n~! for all j=0,--,n and nz 1. From
Lemma 2.3 we conclude that

xﬁ” <1forallk=1,---,nandn=1

n

J
u - X ooa+ Zovwa
k=1 1

k=j+

>(1~-n"'Y) X y, forallj=0,--,n;all
k=1

(3.2
choices of y, 2 0 other than y;, =+ =y,=0;and alln 2 1.
3. Let E be a linear space with a countable Hamel basis {¢;: k =1,2,-},
and let E,, be the m-dimensional linear subspace spanned by e;, *,e,, for each
m=1,2,...

For each m, consider the functions f,,,: E,, = R, n = m, defined by

m
Y ockxﬁu-
k=1

(3.3) fun I na) =
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Each one of these functions is a seminorm (actually a norm, but we do not need
this fact). For fixed m, the sequence (f,,),2>m is uniformly equicontinuous, and
uniformly bounded on compact sets (all these terms refer to the natural separated
uniformity of the m-dimensional space E,,), since

fou (2 e )~ E st

on account of (3.3) and (3.1). Therefore an application of Ascoli’s Theorem for
each m, combined with a diagonal process, yields the existence of a strictly
increasing sequence (p(n)) of positive integers such that the limit

e
k=1

(34 n (2 “kek) = limfm,p(n)( z Otkek) =lim | T axf™ “
k n-w k=1

=1 n-w k=1
exists for all X'_; o.e, € E. (We could have obtained this result by a single appeal
to Ascoli’s Theorem for functions on the space E provided with the direct sum
uniformity.) From (3.4) it is clear that 7: E — R is a seminorm. We shall now show
that it actually is a norm.
4. From (3.1), (3.2), (3.4) we deduce

(3.5) (e

IA

1 forallkz 1,

v

(3.6) T (— Y oo+ X y,‘e,c)
k=1

m
X 7 forallj=0,--,m;
k=j+1 k=1

all choices of 3, 20, k=1,---,m; and allm = 1.

In particular,

J m
(3.7 n(~ e+ X ek)gmforauj=0,~--,mandanm;1.

k=1 k=j+1 /

It follows from (3.7) and Lemma 2.4 that = is a norm on E, as claimed. From
now on, E shall be taken to be the given linear space provided with the norm 7.
We remark in passing that the triangle inequality compels equality in (3.5),
(3.6), (3.7).

5. We claim that E is finitely representable in X. Since every finite-dimensional
subspace of E is a subspace of E,, for a suitable m, it is enough to show that, for
each m and each number A > 1, there exists a linear mapping T': E,, » X such that
A7'n(2) £ || Tz | £ An(z) for all z€E,,

In the argument leading to (3.4), the use of Ascoli’s Theorem allows us to assert
that the convergence of the sequence (f,, ,m), to the restriction of = to E, is
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uniform on compact subsets of E,. Since 7 is a norm, the set {z € E,,: n(z) = 1} is
compact; since the f,, ,») and =, being seminorms, are absolutely homogeneous,

it follows that there exists a positive integer n* such that
(3.9) A™I(2) £ f pany(2) £ An(2) for all z€ E,,.

We thendefine T: E,— X by T(Zf-, %)) = Zp—; 4x2"". Thus T is linear and ,
by (3.3), | Tz|| = f.pe(2) for all z€E,. In view of (3.8), T satisfies all the
required conditions.

6. To conclude, we claim that the completion of E is not reflexive. Indeed, its

unit ball contains the vectors e;,e,, -, and (3.6) implies
dist(conv {e;, -, e;}, conv{e;;,€;44,-}) =2forallj=1.

Therefore this space is not reflexive [3, Theorem 8: equivalence of (29) and (32)].
The normed space E is finitely representable in X and its completion is not
reflexive. Therefore X is not super-reflexive, and the proof is complete.

Added in proof. A comment by L. A. Karlovitz led to the realization that the
proof of the ““only if*” part of this theorem could have been concluded after
formula (3.2) with the observation that

dist(conv{xy,---,x;}, conv{x; s, -, %)) >2(1~n"Y), j =1, ,n—1,

so that X has a ‘“‘finite flatness property” and is therefore not super-reflexive
[5; Lemmas B and C]. The remainder of our proof is then an instructive alter~
native proof of this last implication.

COROLLARY 3.2. A normed space has a super-reflexive completion if and
only if m(X)>2.

PRrOOF. Ttisobviousthata normed space satisfies (J)if and only ifits completion
satisfies (J). The conclusion follows from Theorems 3.1 and 2.2.

COROLLARY 3.3. If X and Y are isomorphic normed spaces, then m(X) > 2 if

and only if m(Y) > 2. If X is a normed space, m(X) > 2 if and only if m(X*) > 2.

Proor. Super-reflexivity of Banach spaces is preserved underisomorphism and
duality (and implies reflexivity) [4, Theorem 2]. The conclusion follows from

Corollary 3.2.
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