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ABSTRACT 

It is shown that a Banach space is super-reflexive if and only if the girth of its 
unit ball is greater than 4. Consequently, "girth greater than 4" is a property 
preserved under isomorphisms and duality. 

1. Introduction 

This note is a further contribution to the geometrical insight into certain 

conditions, stronger than reflexivity, for Banach spaces. The concept of  super- 

reflexivity of Banach spaces was introduced and discussed by James [4], who 

showed that it has several equivalent geometric interpretations and that it is 

preserved under isomorphisms and duality. The concept of the girth of the unit 

ball, i.e., the infimum of the lengths of centrally symmetric simple closed rectifi- 

able curves on its surface, was introduced by Schaffer [6]; Sch/iffer and Sundaresan 

proved in ['8] that a Banach space is reflexive if the girth of its unit ball is not 4. 

In this note we prove that, in fact, the space is super-reflexive if and only i f  this 

girth is not 4. We thus obtain, on the one hand, an additional metric characteriza- 

tion of super-reflexivity, and prove, on the other, that "gir th not 4"  is a property 
preserved under isomorphism and duality. 

2. Definitions and auxiliary results 

All normed spaces shall be non-trivial real normed linear spaces. A subspace of a 

normed space is a linear subspace provided with the norm induced by the inclusion. 

If  X and Y are normed spaces, Y is said to befinitely representable in X i f  

* This work was supported in part by NSF Grants GP-28578 and GP-28999, respectively. 
Received February 13, 1972 

398 



Vol. 11, 1972 SUPER-REFLEXIVITY AND GIRTH OF SPHERES 399 

and only if for every finite-dimensional subspace Z of Y and every number 2 > 1 

there exists a linear mapping T: Z ~  X such that 2-1[I z][ < II Tzll < 211 zll for 

all z ~ Z; equivalently, if and only if for every finite-dimensional subspace Z of X 

and every number e > 0 there exists a subspace W of X, of the same dimension, 

such that A(Z, W) < e, where A is the Banach-Mazur distance [1, pp. 242-243]. 

Finite representability is a transitive relation, and it is easy to see that a normed 

space is finitely representable in every dense subspace of itself. It follows that Y is 

finitely representable in X if and only if the completion of Y is. 

A Banach space X is said to be super-reflexive [4] if and only if no non- 

reflexive Banach space is finitely representable in X. The preceding comments 

show that to prove that a given Banach space X is not super-reflexive it is enough 

to exhibit a normed space that has a non-reflexive completion and is finitely 

representable in X. 

For a normed space X, we denote by 2re(X) the girth of its unit ball, as defined 

in the introduction. For a more detailed discussion of this concept, see [6], [8]. 

Obviously, re(X)> 2. The link between the condition " re (X)= 2" and the 

geometric conditions that prevent the space from being super-reflexive is the 

following property of a normed space X, introduced in [8]; it is a generalized 

negation of uniform non-squareness [2]: 

(J): For every positive integer n and every number p, 0 < p < 1, there exist 

x k e X ,  k = 1,. . . ,n,  such that IIx ll =<, for k = 1,. . . ,n,  and 

1 j + l  

f o r j = O , . . . , n .  

We require several auxiliary results; the first two are theorems from [8]. 

THEOREM 2.1. ([8, Theorem 2.2]). I f  Y is a non-reflexive Banach space, 

then Y satisfies (J). 

TItEOREM 2.2. ([8, Theorem 3.2]). A normed space X satisfies (J) i f  and only 

i f  re(X) = 2. 

LEMMA 2.3. Let X be a normed space, ~ a number, 0 < ~ <1,  and n a 

positive integer. I f  Uk e X and IIuk II = a for = 1, ..., n, and if  II ]~] Uu II > n - e, 

then I[ ?s II > (1 -- g) ~Yk, for every choice of numbers Yk >- O, k = 1,...,n, 

other than y, . . . . .  7, = O. 
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PROOF. Let the Yk be given, and set Yn+k = 7k, k = 1, . . . ,n - 1. Then 

(n  -- g) 7k < Uk Yk = 7k+iUk <~ ~kUR 
1 1 1 i =  k = l  ' 1 

n - 1  

i = 1  k = l  1 1 

and the conclusion follows. 

Li~MMA 2.4. Let E be a real linear space and let ~: E -~ R be a seminorm on 

E. I f  n is a positive integer and Xk E E , k = 1, ..., n, satisfy 

(2.1) 7~(Xk) < 1, k = 1, . . . ,n, 

1 j + l  

then U(Z~akXk) > O for all real ak, k = 1, . . . ,n, unless al . . . . .  ~ = 0. 

PROOF. (cf. [-7, Proof of  Theorem 2]). Suppose that, on the contrary, there 

exist Otk, not all 0, such that 

We may assume without loss of generality that 

(2.4) maxkl ekl = 1 = I C~hl 

for some h, 1 <- h < n. Then 

J - -  a k  "~- 0~k -{- - -  0~k "}- a k  ~ - -  (Xk -{- ~k  
1 h 1 h + l  1 h 

One of  the two summands of  the leftmost member is not less than 1; setting 

j = h - 1 or j = h, and replacing every ~k by - c~ k if necessary, we may con- 

sequently assume, without invalidating (2.3), (2.4), that 

(2.5) - Y~ ek + ek > 1  for some j,  0 < j = n .  
1 j + l  

Combining (2.2) for that value o f j  with (2.3), (2.4), (2.1), (2.5), we find 

n - l < ~ z ( -  ~ Xk + ~ Xg) = U( -- ~ (l  + ~k)Xk + ~ (1--Ctk)X k) 
1 j + l  1 j + l  
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< Z (1 + ak)  -t- (1 - -  ~k) = n - - ~ ~k "~ 
1 j + l  1 j + l  

a contradiction. 

401 

ak] < n -  1, 
/ 

3. The main theorem 

THEOREM 3.1. I f  X is a Banach space, X is super-reflexive if and only if X 

does not satisfy (J). 

PROOF. 1. Suppose that X is not super-reflexive. Then there exists a non- 

reflexive Banach space Y that is finitely representable in X; by Theorem 2.1, Y 

satisfies (J). Let n and p, 0 < p < 1, be given, and choose 2 > 1 such that  ).2p < 1. 

There exist ykEY, k = l , . . . , n ,  such that  Ilyk[l<<-i for k = l , . . . , n  and 

[I - ~ Yk + ~+1 Yk H > 22pn for j = 0,.. . ,  n. I f  Z is the (at most n-dimensional) 

subspace of Y spanned by Yl , ' " ,  Y,, there exists a linear mapping T: Z ~ X such 

that  2-i[I z [I < ][ Tzl[-<-~11 zll for all z eZ.  W e s e t x k = 2 - 1 T y k e X ,  k =  1,-..,n, 

and find II x~ II --< ~-'~[I y~ 11 < 1 for k = 1, . . . ,n, and 

J J 

1 j + l  1 j + l  

for j = 0,...,  n. Since n and p, 0 < p < 1, were arbitrary, X satisfies (J). 

2. In the rest of the proof we assume that X satisfies (J). There exist, therefore, 
n Xk E X for all k = 1,..., n and n > 1 such that 

(31) II x ll < 1 for a u k =  1, . . . ,n and n >  1 

and II - ] ~ = l x ~ +  ~7,=j+lxT, II > n - n  - i  for all j=O, . . . , n  and n > l .  From 
Lemma 2.3 we conclude that  

- , , ,  
k = l  k = j + l  k = l  

(3.2) 

choices of]~ k ~ 0 other than ~l . . . . .  ~, -- 0; and all n > 1. 

3. Let E be a linear space with a countable Hamel basis {ek: k = 1,2,...}, 

and let E,, be the m-dimensional linear subspace spanned by el, "",em, for each 

m = 1,2, . . . .  

For  each m, consider the functions fro, :Em ~ R, n > m, defined by 
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Each one of these functions is a seminorm (actually a norm, but we do not need 

this fact). For  fixed m, the sequence (fm,),>=m is uniformly equicontinuous, and 

uniformly bounded on compact sets (all these terms refer to the natural separated 

uniformity of the m-dimensional space Era), since 

[fro, m~ o~kek -- fro. flkek ~-~ m~ l ~k -- flk I 
= 1  / k = l  

on account of (3.3) and (3.1). Therefore an application of Ascoli's Theorem for 

each m, combined with a diagonal process, yields the existence of a strictly 

increasing sequence (p(n)) of positive integers such that the limit 

~kek = lira ak Xp(") (3.4) rc ~ COke k = limfm,p(.) =x 
= 1  n ~ o o  n ~ o o  k = 

exists for all ~ ' =  ~ Ctke k C E. (We could have obtained this result by a single appeal 

to Ascoli's Theorem for functions on the space E provided with the direct sum 

uniformity.) From (3.4) it is clear that 7z: E ~ R is a seminorm. We shall now show 

that  it actually is a norm. 

4. From (3.1), (3.2), (3.4) we deduce 

(3.5) 7r(ek) =< 1 for all k -> 1, 

(3.6) zr - 3'kek + ~'kek > Y~ 7k 
k = l  k = j + l  k = I  

for all j = 0, ..., m; 

all choices of ) '  k _> 0, k = 1, . . . ,m; and all m > 1. 

In particular, 

(3.7) rc - ~. ek + ~ ek > m f o r a l l j = O , . . . , m a n d a l l m > l .  
k = l  k = j + l  

It follows from (3.7) and Lemma 2.4 that  zc is a norm on E, as claimed. From 

now on, E shall be taken to be the given linear space provided with the norm n. 

We remark in passing that the triangle inequality compels equality in (3.5) 2 

(3.6), (3.7). 
5. We claim that E is finitely representable in X. Since every finite-dimensional 

subspace o r E  is a subspace of  Era for a suitable m, it is enough to show that, for 

each m and each number 2 > 1, there exists a linear mapping T: E,, ~ X such that 

jj rz  H =< for all 
In the argument leading to (3.4), the use of  Ascoli's Theorem allows us to assert 

that the convergence of the sequence (fm,p(,)), to the restriction of ~r to Em is 
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uniform on compact subsets of Era. Since n is a norm, the set {z ~Em: n(z) = 1} is 

compact; since the f,,,p(,) and n, being seminorms, are absolutely homogeneous, 

it follows that there exists a positive integer n* such that 

(3.8) ~,-ln(z) <fm,pc,.)(z) < 2n(z) for all z eEm. 

T " m P("*) Thus T is linear and We then define T: Er. ~ X by ( ~ k  = 10~kek) = ~ ' ~ k  = 10~kXk �9 

by (3.3), [ITzll =fm,p(,*)(Z) for all z~Er.. In view of (3.8), T satisfies all the 

required conditions. 

6. To conclude, we claim that the completion of E is not reflexive. Indeed, its 

unit ball contains the vectors el, e2,'", and (3.6) implies 

dist(conv {el, ..-,ej}, conv {ej+l,ej+2, ...}) = 2 for a l l j  > 1. 

Therefore this space is not reflexive [3, Theorem 8 : equivalence of (29) and (32)]. 

The normed space E is finitely representable in X and its completion is not 

reflexive. Therefore X is not super-reflexive, and the proof is complete. 

Added in proof. A comment by L. A. Karlovitz led to the realization that the 

proof of the "only if" part of this theorem could have been concluded after 

formula (3.2) with the observation that 

dist(conv{x~, ...,xj}, conv{xj+l, ...,x,}) > 2(I -n-Z) ,  j = 1 , . . . , n - i ,  

so that X has a "finite flatness property" and is therefore not super-reflexive 

[5; Lemmas B and C]. The remainder of our proof is then an instructive alter- 

native proof of this last implication. 

COROLLARY 3.2. A normed space has a super-reflexive completion i f  and 

only i f  re(X) > 2. 

PROOF. It is obvious that a normed space satisfies (J) if and only if its completion 

satisfies (J). The conclusion follows from Theorems 3.1 and 2.2. 

COROLLARY 3.3. I f  X and Y are isomorphic normed spaces, then re(X) > 2 if  

and only if  re(Y) > 2. I f  X is a normed space, re(X) > 2 i f  and only if  re(X*) > 2. 

PROOF. Super-reflexivity of Banach spaces is preserved under isomorphism and 

duality (and implies reflexivity) [4, Theorem 2]. The conclusion follows from 

Corollary 3.2. 
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